Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jiarong Zhu, ${ }^{\text {a }}$ * Hongjie Chang ${ }^{\text {a }}$ and Xiao-Long Feng ${ }^{\text {b }}$

${ }^{\text {a }}$ Shenzhen Taitai Pharmaceutical Industry Co Ltd, Hi-Tech Park, Shenzhen 518057, People's Republic of China, and ${ }^{\mathbf{b}}$ Instrumental Analysis and Research Center, Sun Yat-Sen University, 135 West Xingang Road, Guangzhou 510275, People's Republic of China

Correspondence e-mail: jrzhu@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.103$
Data-to-parameter ratio $=7.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(+)-(1S,2S,3S,4R,5R)-N-(1,3-Dihydroxyprop-2-yl)-2,3,4-trihydroxy-5-(hydroxymethyl)-1-cyclohexanaminium picrate

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{6}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, the cyclohexane ring has a slightly distorted chair conformation. Molecules are linked into chains by hydrogen bonds.

Comment

(+)-(1S, $2 S, 3 S, 4 R, 5 R)$-1-Amino-5-hydroxymethyl- N-(1,3-di-hydroxyprop-2-yl)cyclohexane-2,3,4-triol, (II), one of the derivatives of validamine, (III), shows strong activity as an inhibitor of α-glucosidase (Horii et al., 1987). As a result of its high hygroscopicity, it is difficult to obtain crystals of (II) suitable for X-ray analysis. We have, therefore, prepared the picrate of (II), which did provide suitable single crystals.

(I)

(II)

(III)

The cyclohexane ring of the title picrate salt, (I), has a slightly distorted chair conformation (Table 1), which is similar to the crystal structure of validamine chloride (Chang et al., 2004). In (I), there are three intramolecular hydrogen bonds (Fig. 1). Molecules of (I) are linked into infinite one-dimensional chains in the [010] direction by intermolecular hydrogen bonds (Fig. 2 and Table 2). The packing mode of (I) is shown in Fig. 3.

Experimental

Compound (I) was prepared by picration of (II), which was obtained according to the procedure of Horii et al. (1987). Compound (II) $(1.55 \mathrm{~g}, 6.17 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(20 \mathrm{ml})$ and 2,4,6-trinitrophenol ($2.82 \mathrm{~g}, 12.31 \mathrm{mmol}$) was added. The mixture was heated under reflux for 4 h and then stirred at ambient temperature (298 K)

Figure 1
View of (I), shown with 50% probability displacement ellipsoids. H atoms have been omitted. Dashed lines indicate hydrogen bonds.

Figure 2
A view of the infinite one-dimensional hydrogen-bonded (dashed lines) chains extending in the [010] direction. H atoms have been omitted.
until it crystallized. The crystals were recrystallized from $80 \% \mathrm{MeOH}$ (m.p. 436.5-438.5 K). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 1.62-1.73(m, 2 \mathrm{H}), 2.10(m$, $1 \mathrm{H}), 3.20-3.30(m, 1 \mathrm{H}), 3.38-3.48(m, 2 \mathrm{H}), 3.54-3.62(m, 2 \mathrm{H}), 3.62-$ $3.84(m, 6 \mathrm{H}), 8.60(s, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 25.18,39.10,58.03$, $58.63,58.75,62.32,62.38,70.99,72.60,74.80,127.86,128.54,141.85$, 163.21; ESI-MS m/z: $503\left(M^{+}+1+\mathrm{Na}\right)$.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{6}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$	$D_{x}=1.586 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=480.39$
Monoclinic, $P 2_{1}$	Mo $K \alpha$ radiation
$a=8.7362(11) \AA$	Cell parameters from 966
$b=6.8235(8) \AA$	reflections
$c=16.957(2) \AA$	$\theta=3.2-26.8^{\circ}$
$\beta=95.769(2)^{\circ}$	$\mu=0.14 \mathrm{~mm}^{-1}$
$V=1005.7(2) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=2$	Block, yellow
	$0.33 \times 0.25 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996)
$T_{\min }=0.884, T_{\max }=0.974$
6583 measured reflections

> 2383 independent reflections
> 2138 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=27.0^{\circ}$
> $h=-10 \rightarrow 11$
> $k=-8 \rightarrow 7$
> $l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.103$
$S=1.05$
2383 reflections
304 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0581 P)^{2}\right. \\
& \quad+0.2641 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

C1-N1	$1.520(3)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.528(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.523(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.528(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.534(4)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.509(3)$
$\mathrm{C} 2-\mathrm{O} 1$	$1.421(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.515(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.537(3)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.523(4)$
$\mathrm{C} 3-\mathrm{O} 2$	$1.423(3)$	$\mathrm{C} 8-\mathrm{O} 5$	$1.413(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.522(4)$	$\mathrm{C} 9-\mathrm{O} 6$	$1.420(4)$
$\mathrm{C} 4-\mathrm{O} 3$	$1.423(3)$	$\mathrm{C} 10-\mathrm{O} 4$	$1.427(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.527(4)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$112.7(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$111.1(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$107.34(19)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$110.5(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$111.5(2)$	$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6$	$109.9(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$110.6(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$113.4(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$107.94(19)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$111.5(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.4(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 9$	$105.7(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$112.08(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 9$	$114.0(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	$111.5(2)$	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 7$	$110.8(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$108.94(19)$	$\mathrm{O} 6-\mathrm{C} 9-\mathrm{C} 7$	$110.5(3)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$111.6(2)$	$\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 5$	$112.8(2)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$111.5(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$117.03(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$111.22(19)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$49.8(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$70.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-70.3(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-50.6(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$53.6(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$52.1(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$55.8(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 5$	$-58.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-58.3(3)$	$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 5$	$61.5(3)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	$-50.5(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 9-\mathrm{O} 6$	$-50.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$60.4(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{O} 4$	$-73.6(3)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$55.4(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-70.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-57.2(3)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6$	0.90	2.22	2.707 (3)	114
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.90	2.24	2.751 (3)	115
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\text {i }}$	0.90	2.17	2.839 (3)	131
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 5^{\text {ii }}$	0.82	1.96	2.671 (3)	144
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {ii }}$	0.82	1.86	2.676 (3)	171
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {i }}$	0.82	2.03	2.844 (3)	171
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}$	0.82	2.14	2.790 (3)	136
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {i }}$	0.82	2.30	2.932 (3)	134
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\text {iii }}$	0.82	1.84	2.662 (3)	175
O6-H6C \cdots O13 ${ }^{\text {iv }}$	0.82	2.15	2.885 (3)	149
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O} 12{ }^{\text {iv }}$	0.82	2.26	2.898 (4)	135
Symmetry code: $-x, \frac{1}{2}+y, 1-z$	$y=\frac{1}{2},$	$x,$	(iii) $-x$	$1-z$; (iv)

organic papers

H atoms on C and N atoms were positioned geometrically and refined with a riding model, with distances $\mathrm{C}-\mathrm{H}=0.97\left(\mathrm{CH}_{2}\right), 0.98$ (CH) or $0.93 \AA$ (aromatic) and $\mathrm{N}-\mathrm{H}=0.90 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms of OH groups were constrained to an ideal geometry, with $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, but each group was allowed to rotate. In the absence of any significant anomalous scattering, Friedel equivalents were merged prior to the final refinement and the absolute configuration was assigned by reference to the known chirality of (III) established in our previous paper (Chang et al., 2004).

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART (Version 5.054), SAINT-Plus (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 3
Packing diagram of (I), viewed along the b axis. Hydrogen-bonded (dashed lines) chains are perpendicular to the plane of the paper. H atoms have been omitted.

Chang, H.-J., Zhu, J.-R., Feng, X.-L. \& Xu, H.-D. (2004). Acta Cryst. E60, o1712-o1714.
Horii, S., Kameka, Y. \& Fukase, O. (1987). US Patent No. 4701559. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

